
J. Mol. Model. 1996, 2, 227 – 238

* To whom correspondence should be addressed

© Springer-Verlag 1996

Sedimentation of Clusters of Spheres.
I. Unconstrained Systems

Konrad Hinsen† and Gerald Reinhard Kneller*

Institut für Theoretische Physik A, RWTH Aachen, Templergraben 55, D-52056 Aachen, Germany

(g.kneller@kfa-juelich.de)

† Present address: Institut de Biologie Structurale, Laboratoire de Dynamique Moleculaire, 41 Av. des Martyrs, F-38027

Grenoble, France (hinsen@ibs.ibs.fr)

Received: 14 May 1996 / Accepted: 1 August 1996 / Published: 4 September 1996

Abstract

We describe a numerical method for calculating hydrodynamic interactions between spherical particles effi-
ciently and accurately, both for particles immersed in an infinite liquid and for systems with periodic boundary
conditions. Our method is based on a multipole expansion in Cartesian tensors. We then show how to solve the
equations of motion for translational and rotational motion of suspended particles at large Peclet numbers. As an
example we study the sedimentation of an array of spheres with and without periodic boundary conditions. We
also study the effect of perturbations on the stability of the trajectories.
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Introduction

The behavior of particles suspended in a liquid has inter-
ested scientists ever since Stokes derived the drag formula
for a single suspended sphere [1]. It is also important for
many applications in rheology and colloid chemistry. Since
all but the simplest problems require a numerical solution,
numerical techniques play an important role in this field. In
this article we deal with the two most important problems
that any numerical simulation must address: the calculation
of hydrodynamic interactions and the integration of the equa-
tions of motion.

In the treatment of hydrodynamic interactions, we limit
ourselves to spherical particles and low Reynolds numbers,
but aim to make the calculations both accurate and efficient.

Hydrodynamic interactions have three properties that make
their numerical treatment difficult:
• They are many-body interactions, i.e. they are not pairwise

additive.
• They are long-ranged, decaying as 1/R, where R is an

interparticle distance. This creates special problems for
periodic systems.

• They diverge for certain types of motion when particles
approach each other.

The oldest and simplest approximation, apart from ne-
glecting hydrodynamic interactions altogether, consists of
assuming pairwise additivity and describing the interactions
between each pair with the Oseen tensor (see Eq. 3.3). This
describes the leading 1/R terms correctly, but is nevertheless
very inaccurate. Besides, this approximation has the funda-
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mental problem that the diffusion matrix is not positive defi-
nite, which can only be circumvented by introducing more
arbitrary approximations [2]. Improvements such as the
Rotne-Prager tensor are available, but they all share the ba-
sic problem of assuming pairwise additivity and not treating
long-ranged contributions correctly; they also do not take
rotational motion into account. The importance of the cor-
rect inclusion of all long-ranged terms was demonstrated in
[3], where sedimentation of large rigid clusters of spheres
was studied. Even in such rigid structures, where short-ranged
lubrication forces are irrelevant, all terms decaying as 1/R3

or slower must be included to prevent dramatic errors in the
sedimentation coefficient.

A better approximation has been developed by Durlofsky
et al. [4]. Their scheme provides correct short-distance
behavior and takes the multi-body nature of hydrodynamic
interactions into account; however, it still does not contain
all long-range terms correctly and does not provide suffi-
cient accuracy for many applications. The first systematic
scheme that can in principle be made arbitrarily accurate was
proposed by Ladd [5, 6]. Both Durlofsky et al. [4] and Ladd
[7] have used their methods for dynamical simulations.

Recently, Cichocki et al. [8] presented a number of im-
provements that yield accurate results at a much reduced cost.
We will show how these improvements can be combined with
previous analytical work on hydrodynamic interactions [9, 10]
and numerical techniques from the related field of electro-
static interactions [11] to construct an efficient and accurate
numerical implementation that calculates hydrodynamic in-
teractions for systems of spherical particles. This implemen-
tation is available from the CPC library [12]. It has already
been used in a study of the sedimentation coefficients of con-
glomerates of spheres [3], which has shown very good agree-
ment with experimental results.

We will also present an integration scheme that is suit-
able for accurate dynamic simulations in the Stokesian Dy-
namics regime, i.e. at high Peclet numbers. We include the
rotational motion of the particles, which has been neglected
so far. The rotational motion of suspended spheres is often
interesting in itself, but its calculation becomes essential when
systems with constraints, such as rigid assemblies and flex-
ible chains, are considered. We will deal with the specific
problems of constrained systems in a second paper.

To test our integrator, we study the sedimentation of a
few small systems, both in unbounded and periodic
geometries. Unfortunately there is little experimental data
we could compare to; the sedimentation of some small clus-
ters has been studied by Jayaweera et al. [13], but they do
not provide enough data to allow a meaningful comparison
to numerical calculations. Therefore, we must limit ourselves
to demonstrating the convergence of our results with decreas-
ing time steps.

Stokesian Dynamics regime

We consider a system of N arbitrary particles suspended in a
viscous liquid which is at rest at infinity. The particles move
under the influence of external forces and forces mediated
by the liquid; the latter consists of deterministic and random
contributions. The equations of motion for the particles are
given by

[ ] ( ) ( )d
dt h r extMV F R,V F R F= + + (2.1)

In this equation, R is a vector containing the positions
and orientations of all particles. Similarly, V contains the
translational and angular velocities, and F describes forces
and torques. The matrix M  is block diagonal and contains
the masses and moments of inertia of all particles.

The vector Fh contains the hydrodynamic forces, i.e. the
deterministic forces exerted by the fluid on the particle. We
assume that they are given by

F Vh = − ζζ (2.2)

where the matrix ζζζζζ is called friction matrix and depends on
the viscosity of the liquid as well as on the positions and
orientations of all suspended particles. The random forces Fr
must be zero on average and fulfill the condition

( ) ( ) ( )F Fr r t kT t0 = ζζδ (2.3)

which follows from the fluctuation-dissipation theorem.
Typically the time scale of observable particle motion is

several orders of magnitude larger than the relaxation time
of the particle momenta τ = mζ–1. In other words, the ob-
served particle velocities, which we will denote by U, are
averages of the velocities V over times larger than τ. Under
this condition, one can derive an expression for the displace-
ment of the particles in a time interval ∆t which is much
larger than τ, but still small on the time scale a/U, where a is
a typical particle size [14]. This expression is

∆ ∆ ∆R F D X= + ∇⋅ +µµ ext t t (2.4)

where µµµµµ = ζζζζζ–1 is called the mobility matrix and D = kTµµµµµ is
called the diffusion matrix. X is a random displacement with

X XX D= =0 2, ∆t (2.5)

Simulations based on these equations are called Brownian
Dynamics simulations.

To judge the relative importance of deterministic and the
random motion, one introduces dimensionless quantities
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where a is the diameter of a typical particle, U a typical par-
ticle velocity, and D0 a typical one-particle diffusion coeffi-
cient. Eq. 2.4 then becomes

∆ ∆ ∆$ $ $ $ $ $ $ $R F D X= + ∇⋅ +Peµµ ext t t (2.7)

where the dimensionless quantity Pe = Ua/D0 is called the
Peclet number. At small Peclet numbers, Brownian motion
dominates. At large Peclet numbers, the random
displacements can be neglected. Simulations in this regime
are called Stokesian Dynamics simulations.

From Eqs. 2.2, 2.3, and 2.4 it is evident that the effect of
the liquid in which the particles are suspended is completely
described by the friction matrix ζ or its inverse, the mobility
matrix µ. An accurate and efficient calculation of these ma-
trices is therefore extremely important for computer simula-
tions of suspended particles.

Creeping flow and induced forces

Like most other approaches, our calculation of the friction
and mobility matrices is based on the assumption that the
liquid can be described by the so-called creeping-flow equa-
tions, which are valid for flow at low Reynolds numbers
[15, 16]. We will also assume that the liquid is incompress-
ible. The equations of motion for the liquid are then

η∇2 0 0v f v− ∇ + = ∇⋅ =p , (3.1)

where v(r ) is the fluid velocity at point r , p(r ) is the pres-
sure, and f(r ) is the force density acting on the fluid. In addi-
tion, boundary conditions at infinity and on the particle sur-
faces must be specified. Solutions to the creeping-flow equa-
tions for a given force density can be expressed conveniently
as

( ) ( ) ( ) ( )v r v r T r r f r= + − ⋅∫0
3d r' ' ' (3.2)

where v0(r ) is the solution for f(r)=0 and the Green function
T(r) for an unbounded fluid are given by the Oseen tensor

( )T r 1 rr
r r

= +












1
8

1 1
3πη (3.3)

Finally, we must specify the boundary conditions at the
surfaces of the suspended particles and at infinity. Experi-
ence has shown that real systems are best described by stick
boundary conditions, i.e. the fluid sticks to the particle sur-
faces. The flow at infinity depends on the problem being stud-
ied; the two most important cases are vanishing flow and
uniform shear flow.

When the particles move relative to the fluid, they exert a
force density on it, which for non-permeable particles is lo-
calized on the particle surfaces. The force density f(r ;j) in-
duced on particle j at position Rj moving with translational
velocity Uj and angular velocity ωj can be written as

( ) ( ) ( ) ( )[ ]f r Z r R r' R u r v r; ' , ' 'j d r j j j j aj= − − −∫ 3
(3.4)

where Z j(r ,r ’) is a friction kernel that depends only on prop-
erties of the particle and on the boundary conditions, va,j(r)
is the velocity field in absence of particle j, and uj(r ) is given
by

( ) ( )[ ] ( )u r U r R r Rj j j j j= + × − −ωω Θ (3.5)

where the step function Θ (r–Rj) is one inside the volume of
the particle and zero outside. From Eq.3.2 it follows that the
velocity field va,j is given by

( ) ( ) ( ) ( )v r v r T r r f ra j d r, ' ' '= + −∫0
3

(3.6)

with

( ) ( )f r f r= ∑ ;i
i

(3.7)

Calculation of the friction matrix

Eqs. 3.4 and 3.6 form an integral equation from which in
principle f(r; i) can be determined for a given configuration
of particles with given linear and angular velocities. Since
the force and torque on particle i are related to f(r ,i) by

( )

( ) ( )

F f r

T r R f r

i

i i

d r i

d r i

=

= − ×

∫
∫

3

3

;

;
(4.1)

and linear and angular velocities enter via Eq.3.5, the solu-
tion of the integral equation yields the friction matrix ζζζζζ.

To find a numerical solution of the integral equation, it
must be transformed into an algebraic equation, which can
be done with a multipole expansion analogous to the famil-
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iar multipole expansion in electrostatic systems. As in elec-
trostatics, the multipole expansion is guaranteed to converge
only outside a spherical region containing all points where
the force density does not vanish. It is therefore difficult to
apply to non-spherical particles. For this reason, we will from
now on restrict attention to particles of spherical shape. This
is not as strong a restriction as it may seem, since many com-
plicated shapes can be modelled by assemblies of small
spherical components.

Multipole expansion

The multipole expansion for the induced force densities can
be formulated in several ways; for numerical applications,
the expansion in irreducible Cartesian tensors [17, 9, 10] is
most convenient. The force multipole tensor of rank p+1 for
particle j at position Rj is defined by

( ) ( ) ( ) ( )f r R f r Rp
p j

p
jj d r j

+ = − −∫1 1 3
!

; (4.2)

Here f(r ;j) is the force density induced on particle j, and
r p is the p-fold tensor product of the vector r  with itself.
Similarly, we define velocity multipole tensors that describe
the velocity field u(r)–v0(r) around the particle by

( ) ( ) ( ) ( )[ ]c u r v r
r R

p
p

pj
j

+
=

= ∇ −1 1
0! (4.3)

These multipole tensors can be decomposed into irreduc-
ible tensors, of which many do not give a contribution to the
flow field. It has been shown in [10] that it is sufficient to
consider the irreducible tensors flσ and clσ, l = 1,2,…, which
for given l and σ have 2l + 1 independent components. These
tensors are given by
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and
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where
}

a
 
indicates the irreducible part of the tensor a, εαλµ is

the completely antisymmetric Levi-Cività tensor, and δαβ is
the Kronecker symbol.

In this representation, the one-particle friction kernel

Z j(r ,r ’) is represented by a matrix ( )Z jl ll lσµ µ σ µ µ1 1K K, ' ' ' ' '

whose elements have been calculated for several particle
models [18]. Similarly, the Oseen tensor is represented by a

matrix ( )G ijl ll lσµ µ σ µ µ1 1K K, ' ' ' ' '
, which expresses the flow

field due to the force multipoles of particle j at the position
of particle i. Expressions for its elements have been derived
in [10]. The original integral equation for f(r ;i) becomes a
linear system of equations whose unknowns are the force
multipole moments f lσ:

(4.6)

( ) ( ) ( ) ( ) ( )f Z c G fl l l l l l l
lj

i i i ij jσ σσ
σ

σ σ σ σ
σ

= − ⋅












∑ ∑∑ ′′ ′′ ′′ ′′

′′ ′′
'

'
' ! ';

1

The friction matrix can be obtained by solving these equa-
tions with c10( j ) = U j  – v0(Rj) and

( ) ( )c v r r R11 02j j j
= − ∇ × =ω , making use of the fact that

the forces Fj are given by f10(j) and the torques T j by 2f11(j).
A detailed description of the multipole expansion can be
found in [3] and [12]. It should be noted that the friction
matrix resulting from this calculation is positive definite at
all levels of truncation of the multipole expansion.

The core of our numerical scheme to calculate hydrody-
namic interactions is the numerical solution of Eq. 4.6, trun-
cated to a finite number of multipole moments. Details can
be found in [12], where the implementation we use is de-
scribed.

Short-distance forces

Relative motion of particles at short distances creates large
frictional forces, whose description by a multipole expan-
sion requires a prohibitively large number of terms. We there-
fore follow the suggestion of Durlofsky and Brady [4] and
incorporate the short-range forces approximately in the form

( ) ( )ζζ ζζ ζζ ζζL L L
ij

i j

N
*

,

= + −





=
∑ 2 2

1
(4.7)
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where L is the edge length of the elementary cell and V its
volume. A method for the efficient calculation of S1 and S2,
based on an analogous method for electrostatics [23], is given
in [24]. It should be noted that the Hasimoto tensor (5.1)
already includes the effect of the neutralizing homogeneous
force density added to make the velocity field finite.

The multipole expansion in terms of irreducible Cartesian
tensors that has been mentioned before must be re-derived
with the new Green function. In its original form, it is valid
only when the applied force density vanishes outside the par-
ticles. This assumption is violated by the addition of the neu-
tralizing homogeneous force density. Starting from the origi-
nal Taylor expansion that leads to Eq. 4.2, one finds again
the formula given in [12] with the matrix G(ij ) replaced by

( ) ( ) ( ) ( )G ij G ij G ij G ijP H= + − ′′' (5.3)

Here GH(ij ) is the result of evaluating Eq.(A6) from [3]
or Eq. (A.13) from [12] with the Oseen tensor T(r) replaced
by the Hasimoto tensor TH(r). The only non-zero elements
of G’(ij ) are

( )
( )
( ) ( )
( )

G ij

G ij

G ij G ij

G ij
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'

' '
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; '

; '

; ' ; '

; ' '

10 12
2
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11 11
2

3

12 10 00 02

20 20
1

51 2 1 2

µ µ η

µ µ η

µ µ µ µ

µ µ µ µ η

=

= −

=

= −

(5.4)

Note that G’(ij ) is non-zero even for i = j. The matrix
G’’ (ij ) is zero for i = j and for i ≠ j given by Eq. (A6) from [3]
with T(r ) replaced by

( ) ( )′′ = − ∇∇T r r 1 r1
6

2 1
120

2 2

η η (5.5)

and evaluated at r = 0.
For l + l’ > 4 the elements of GP(ij ) are lattice sums over

the corresponding elements of G(ij ); in numerical calcula-
tions, they can be obtained by summing over all lattice sites
within a cutoff radius. The remaining elements contain long-
ranged contributions and must be calculated by evaluating
the functions S1(r ) and S2(r ) as described in [24] and using
the procedure described above.

where ζζζζζL is the friction matrix as calculated according to the
above description with a multipole expansion of order L, ζζζζζ(2)

is the exact two-particle friction matrix calculated from lu-
brication theory [20], and ζζζζζL

(2) is the two-particle friction
matrix in order L approximation. The basic idea of this form
is that the large short-range forces are localized in the region
between two particles and can therefore be assumed to be
pairwise additive. It is evident that ζζζζζ*

L converges to the same
value for L → ∞ as ζζζζζL, but it does so much faster. A multipole
approximation of order 3 is sufficient to calculate the fric-
tion matrix with an accuracy of about 1% [8].

Mobility calculations

In most applications of hydrodynamic interaction, such as
Stokesian Dynamics simulations, it is not the friction matrix
that is immediately required, but the particle velocities re-
sulting from a given set of external forces, i.e. µµµµµ·Fext. These
velocities can be obtained by first calculating the complete
friction matrix and then solving the set of equations ζζζζζ∗

LU =
Fext for U. Indeed this has been done by Durlofsky et al. [4]
and by Ladd [5]. However, it has been shown in [8] that the
velocities can be obtained directly by solving a modification
of the multipole equation that leads to the friction matrix.
This procedure is numerically much more efficient.

Periodic boundary conditions

The long range of the hydrodynamic interactions causes both
conceptual and practical problems when periodic systems
are studied. The difficulties are exactly analogous to those
for the equally long-ranged Coulomb interactions, and can
be solved by very similar methods. Our treatment is based
on the theoretical framework developed by Felderhof [21].
We limit ourselves to elementary cells of cubic shape.

In analogy to the fact that the electrostatic potential of a
periodic system is defined only if the system as a whole is
neutral, the velocity field in a periodic hydrodynamic sys-
tem is finite only if the total force on it vanishes. If necessary
this must be enforced by adding a neutralizing homogeneous
force density to the system; this is physically equivalent to
applying a constant pressure gradient. In addition, the shape
of the macroscopic assembly of elementary cells whose infi-
nite limit is to be considered must be specified; we will as-
sume it to be spherical.

Such a system can be treated much like a finite one with
a different Green function [21]. The Oseen tensor T(r ) must
be replaced by the tensor

( ) ( ) ( )[ ]T r r rH S S= − ∇∇1
4 1 2πη (5.1)

which was first introduced by Hasimoto [22]. The functions
S1 and S2 have cubic symmetry and satisfy the equations
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Stokesian Dynamics

Equations of motion

In the Stokesian Dynamics regime, i.e. for high Peclet num-
bers (see Eq. 2.7), only the external forces need to be consid-
ered as driving forces for the particle displacements, and
Eq. 2.4 becomes

∆ ∆R F= µµ ext t (6.1)

In principle this formula can be used to calculate particle
trajectories. It is the Euler integration scheme [25] for the
differential equation

&R F= µµ ext (6.2)

However, the Euler scheme is not ideal for numerical
purposes. Other methods are more stable and more accurate
at the same computational cost [25].

If rotational degrees of freedom are to be integrated,

Eq. 6.2 must be generalized. The velocity vector replacing&R

then contains all translational velocities, V1,...,VN, and all
angular velocities, ωωωωω1,…,ωωωωωN, of the particles. Correspond-
ingly, R contains the particle positions, specified by R1,…,RN,
and the orientations, specified by Q1,…,QN, where Q is a
suitable set of angular variables. Fext is the vector of all ex-
ternal forces, F1,…,FN, and all external torques, T1,…,TN.
Using the above definitions, the equations of motion for
Stokesian Dynamics read explicitly

V F Ti ij
tt

j

j

N

ij
tr

j

j

N

= +
= =
∑ ∑µµ µµ

1 1
(6.3)

ωω µµ µµi ij
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j

j

N

ij
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j

j

N

= +
= =
∑ ∑F T

1 1
(6.4)

&R Vi i= (6.5)

( )&Q B Qi i i= ωω (6.6)

whereµµ µµ µµ µµij
tt

ij
tr

ji
rt

ij
rr, ,=  and   are 3 × 3 submatrices of the

mobility matrix µµµµµ. The linear relation (6.6) between the an-
gular velocities and the time derivatives of the angular coor-
dinates depends on the choice of the latter. The equations of
motion (6.3) — (6.6) may be written in the compact form

&R B F= µµ ext (6.7)

where B is a block-diagonal matrix containing unit matrices

for the mappingV Ri i→ &  and the matrices B(Qi) for the map-

ping ωω i i→ &Q .

It is well known from molecular dynamics simulations
that quaternion parameters are a convenient choice for the
angular variables, since the resulting matrices B(Qi) are sin-
gularity-free [26]. A comprehensive treatise on quaternions
and their relations to spatial rotations can be found in [27].
Here it is sufficient to know that rotations can be paramete-
rized in terms of four real numbers, q0, q1, q2, q3, which are

subject to the normalization condition q q q qo
2

1
2

2
2

3
2 1+ + + = .

For quaternion parameters the relation (6.6) reads explicitly
(the particle index has been dropped) [28]:

&

&

&

&

q

q

q

q

q q q

q q q

q q q

q q q

x

y

z

0

1

2

3

1 2 3

0 3 2

3 0 1

2 1 0

1
2



















= ⋅

− − −
−

−
−



































ω
ω
ω

(6.8)

Here the angular velocity components refer to the labo-
ratory-fixed coordinate system. Eq. 6.8 is consistent with the
normalization of the quaternion components, since

( )q q q q q q q q q q q qo o
d
dt

& & & &+ + + = ⋅ + + + =1 1 2 2 3 3
1
2 0

2
1
2

2
2

3
2 0

for any set of angular velocity components.

Integration of the equations of motion

Translational motion. Due to the singular behavior of the
hydrodynamic interactions at short distances [20, 16] the dy-
namics of suspended particles can exhibit very different time
scales, since relative motion for particles which are in close
contact is almost completely suppressed. Differential equa-
tions describing such dynamical systems are called stiff dif-
ferential equations. In practice so-called implicit algorithms
have proven to be most useful to integrate stiff differential
equations [25,29]; we find this confirmed for our case, for
which we compared explicit and implicit central difference
schemes for both translational and rotational motion. In the
case of translation, the trajectories of particles in close con-
tact showed unstable oscillatory relative motions, ending with
unphysical overlaps, when an explicit scheme was used. This
could be avoided by using the following discretized form for
the translational equation of motion:

( ) ( ) ( ) { }( )&R
R R

V Ri
i i

i jn
n n

t
≈

+ − −
=

1 1

2∆
(6.9)
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where V i given by Eq. 6.3 and the positions Rj by

( ) ( ) ( )[ ]( )R R R Rj j j jn n n= + + + −1
2

1
2

1 1 (6.10)

The arguments n, n+1, and n–1 are shorthands for t = n · ∆t
etc. Note that theRj depend on the new positions Rj(n+1).
This leads to the following iterative update for the particle
positions:

( ) ( ) { }( )R R V Ri i i jn n tν ν+ + = − +1 1 1 2∆ (6.11)

The superscript ν in Rj
ν indicates that the iterated posi-

tions Ri
ν(n+1) are to be used in the evaluation of the posi-

tions Rj. We start the iteration procedure with

( ) ( ) ( )R R Rj j jn n n0 1 2 1+ = − − (6.12)

This corresponds to setting Rj = Rj(n), which is the con-
ventional central difference scheme. The iteration was stopped
when the Euclidian norm of the distance between consecu-
tive estimates for Rj(n+1) was below a prescribed tolerance
limit ε · a, with a being the particle radius. It should be noted
that the implicit scheme described here is not essential as
long as all the particle distances are sufficiently large; we
found that for distances larger than 10–8a the standard ex-
plicit scheme can be used without any problems.

Rotational motion. We found that the rotational motion, for
which the singularities in the hydrodynamic interactions at
short distances are weaker, could be sufficiently well inte-
grated with a normal central difference scheme. In analogy
to Eq. 6.9, the discretized form of the rotational equation of
motion reads

( ) ( ) ( ) ( )( ) ( ){ }( )&Q
Q Q

B Q Ri
i i

i i jn
n n

t
n n≈

+ − −
=

1 1

2∆
ωω

(6.13)

yielding the update formula

( ) ( ) ( )( ) ( ){ }( )Q Q B Q Ri i i i jn n t n n+ = − +1 1 2∆ ωω

(6.14)

for the quaternion parameters. The angular velocities ωωωωωi are
determined by Eq. 6.4. The body-fixed basis vectors e’ i ro-
tating with the spheres can be updated using e’ i(n+1) =
U(Qi[n+1]) · e’ i(0), where U(Q) is the rotation matrix
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Close contacts A problem one has to face with iterative inte-
gration schemes for differential equations is slow conver-
gence. In our case this concerns the update of the particle
positions (see Eq. 6.11). Slow convergence can occur in situ-
ations where the system asymptotically approaches a con-
figuration in wich particles stick to each other (see our ex-
ample below). We found that sometimes 50 iterations and
more were necessary for ε ≈ 10–12, whereas for larger, but
still small, particle separations only two or three iterations
were necessary. Due to inaccuracies inherent in any numeri-
cal integration scheme even the unphysical situation of over-
lapping spheres cannot not be excluded. To solve the prob-
lem of slow convergence and unphysical particle overlaps,
we removed critical close contacts by the following algo-
rithm:

1. Find all pairs (i,j) of particles whose distance is less
or equal to 2a·(1 + ε), where a is the particle radius and ε is a
tolerance limit.

2. Find all clusters of particles which have a connection
via close contacts. Consider e.g. three particles 1,2,4 where
(1,2) and (2,4) are in close contact. Then, according to the
above definition, {1,2,4} form a cluster since there is a path
from 1 to 4: 1 – 2 – 4.

3. Find the centroid R = 1/NΣ(i)Ri for each cluster and
scale the relative positions by 1 + 2ε. Here N is the number
of particles in a cluster. The new positions are then given by
R' i = R + (1 + 2ε)(Ri – R).

4. Goto 1, to check if new contacts with particles not yet
involved in close contacts have been created by steps 1 to 3.
If this is the case, add these contacts to the ones found in 1
and proceed with 2.

The procedure described above terminates after a finite
number of cycles. The extreme case which can occur is that
the whole system is treated as one cluster. We emphasize
that the above procedure should only be used if the numeri-
cal solution fails due to inevitable accuracy problems. It is
no substitute for an implicit integration scheme which can
handle much closer contacts than an explicit scheme.

Accuracy. We determined the accuracy of the explicit and
implicit integration schemes by simulating the sedimenta-
tion of three particles in a linear arrangement with different
time steps. Here and in the following section, we use a
dimensionless unit of time defined such that a single sphere
in an unbounded liquid would move a distance of 2a/3 in a
time interval of length 1. Figure 1 show the differences in
vertical position for the central particle. All differences are
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Figure 1. The dependence of the error on
the integration step. (a) Explicit/implicit
integrator, ∆t = 0.001. (b) Explicit/implicit
integrator, ∆t = 0.01. (c) Explicit/implicit
integrator, ∆t = 0.05. (d) Explicit integrator,
∆t = 0.001. (e) Explicit integrator, ∆t =
0.005.

with respect to a reference run with a time step of ∆t = 0.001
using the the implicit integrator at all times. The initial and
final configurations are shown in the figures.

Figure 1, curves a – c show the results for an integration
that uses the implicit integrator whenever a distance becomes
smaller than 0.001 a. Initially, while all particle distances
are large, the errors are negligible. The correction mecha-
nism described above becomes active around t = 80, when
the two outer spheres approach each other significantly. Nev-
ertheless the absolute error remains small even for the larg-

est time step, ∆t = 0.05. The step structure of the error is
caused by the close contact elimination procedure described
in the last section.

The corresponding curves (d – e) for a purely explicit
integration scheme (Figure 1b) show that the error in this
case already becomes very large for small step sizes (note
the different scale). This demonstrates the necessity of the
implicit integration scheme whenever short distances cannot
be excluded.
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Figure 2. Sedimentation of a planar square array of nine
equal spheres in a viscous liquid under the influence of a
constant gravitational force. The time separation between
two consecutive configurations is ∆t

frame
 = 5, corresponding

to 5000 time steps of length ∆t = 0.001. A single particle
would move 2/3 · 10–3a during a time step, where a is the
sphere’s radius.

Examples

As an example we study the sedimentation of a square array
of nine equal spheres in a viscous liquid under the influence
of gravity — see video sequence no. Ia (‘Nine equally sized
spheres starting on a quadratic grid’). Here and in all follow-
ing video sequences the center of mass motion is subtracted.
The overall sedimentation of the cluster is shown on the
lefthand side of the screen. The height of the frame indicates
the total falling distance, and the height of the black bar cor-
responds approximately to the height of the screen.

Figure 2 shows the beginning of the simulation. The start
configuration is shown at the top: the nine spheres are lo-
cated in a plane perpendicular to the direction of gravity; the
center-to-center distance between nearest neighbours is 3a,
where a is the radius of a sphere. There are no interactions
between the particles in addition to the hydrodynamic forces.

We ran a simulation of this system for 150,000 time steps
using the methods described above. The length of each time

Figure 3. The end of the simulation whose beginning is shown
in Figure 1. The two configurations correspond to t = 135
and t = 150, respectively.

step was ∆t = 0.001 in our units. Figure 2 shows eight con-
figurations at time intervals of 5, beginning with the initial
configuration. Figure 3 shows two configurations from the
end of the simulation run, corresponding to times t = 135
and t = 150, respectively. In both pictures, we use three dif-
ferent colours to mark groups of spheres related by symme-
try with respect to a 90° rotation around the central sphere in
the initial configuration. The small dots are added to show
the rotation of the spheres. The positions of the configura-
tions in the pictures correspond to the actual distance they
have moved.

In the beginning of the simulation the particles separate
into three planes, the corner particles being the slowest and
the center one being the fastest. This reflects the different
exposure of the particles to the surrounding liquid. Then the
edge particles move outward and the corner particles inward,
whereupon they “dive” through the plane formed by the
former edge particles. Meanwhile the center particle seems
to escape from the others. In the part between Figure 2 and
Figure 3 (see video sequence no. Ia), the edge particles in
turn dive through the plane of the corner particles. This in-
terchange of the planes is not periodic, however; finally the
corner and center particles form a quasi-rigid cluster of five
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Figure 4. The time evolution of the rotation
angles.

Figure 5. The beginning of a simulation with a slightly
perturbed initial configuration. The time separation between
two consecutive configurations is the same as in Figure 1,
i.e. ∆t

frame 
= 5. The simulation time step is ten times as large

as in the simulation shown in Figures 1 and 2, i.e. ∆t = 0.01.

particles falling somewhat faster than the second cluster con-
sisting of the four former edge particles in close contact.

The angle of rotation of the corner and edge particles in
the course of the simulation is shown in Figure 4. Note that
the axis of rotation is constant for each particle, so that a
single angle is sufficient to characterize the rotational mo-
tion.

To test the stability of the system with respect to small
perturbations of the initial configuration, we ran a second
simulation in which all the initial particle coordinates were
randomly shifted by ± 0.1 a. This simulation was run with a
time step of ∆t = 0.01. The results are shown in video se-
quence no. Ib (‘9 equally sized spheres starting on a slightly
perturbed quadratic grid’) and in Figures 5 (first part) and 6
(second part). For comparison, the total falling height indi-
cated by the frame is the same as in the simulation shown in
video sequence no. Ia. Until approximately t = 80 the con-
figurations resemble those of the unperturbed simulation, but
then the order is quickly destroyed.

The strong influence of the long-range terms in the hy-
drodynamic interactions can be seen by comparing a simula-
tion of a system with and without periodic boundary condi-
tions — see video sequence no. Ic (‘Nine equally sized spheres
starting on a quadratic grid with periodic boundary condi-
tions’). For comparison, the total falling height indicated by
the frame is again the same as in the simulation shown in
video sequence no. Ia.

The nine particles now form the cubic elementary cell of
a periodic system whose lattice constant L is 16a (L = 16 in
our units). This simulation was also run with a time step of
∆t = 0.01. The beginning of the simulation is shown in Fig-
ure 7. It should be noted that the time separation between
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Figure 7. The beginning of a simulation with periodic
boundary conditions. Only one elementary cell is shown. The
edge of the elementary cell has a length L of 16a (L = 16 in
our units), where a is the radius of the spheres. Note that the
time separation of two subsequent configurations is twice as
much as in Figure 2, i.e. ∆t

frame
 = 10. The simulation time

step is ∆t = 0.01.

Figure 6. The continuation of Figure 4.

two consecutive configurations in this picture is twice as large
as in Figure 2; the net sedimentation of the particles is much
slower than in the non-periodic case. Nevertheless, the rela-
tive motion of the spheres with respect to one another is not
much influenced by the presence of the periodic images.

Figure 8 shows the heat produced as the particles move
downward against the friction caused by the liquid for all
three simulations. The heat production is given by

Fi i

i

⋅∑ v
(7.1)

the rotational velocities do not enter as there are no applied
torques. For the periodic system, only one of the images is
used. We normalize the heat production by that of nine spheres
sedimenting at infinite distance. Since in our simulation the
forces on all particles are identical and constant, the heat
production is proportional to the velocity of the center of
mass of the nine spheres. Figure 8 shows that initially the
heat production increases but is modulated by an oscillation
corresponding to the position interchanges of the planes of
the corner and edge particles. But once the final clusters are
formed, the heat production decreases monotonously. This
figure also illustrates the differences between the three simu-

lations quantitatively. It can clearly be seen where the per-
turbed simulation starts to deviate significantly from the un-
perturbed one, and the smaller sedimentation speed of the
periodic system is also evident.

This example shows that even very simple systems with
hydrodynamic interactions can show a surprisingly compli-
cated behavior. We are not aware of any theory that could
predict more than the very first steps of our simulations.

Conclusion

We have shown how the hydrodynamic forces between spheri-
cal particles immersed in a liquid can be treated numerically,
and how Stokesian Dynamics simulations can be performed
on such systems. To demonstrate our method, we have per-
formed a simulation of a simple model system.

In its current state, our method can be used to study the
dynamics of colloidal suspensions, provided that the Peclet
number is high enough to justify Stokesian Dynamics. It can
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Figure 8. The normalized heat production in
the course of the three simulation runs.
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also be used for Monte-Carlo type calculations of equilib-
rium properties irrespective of the Peclet number. One of the
most interesting applications from our point of view is the
simulation of macromolecules modelled as assemblies of
spheres; however, this necessitates the treatment of geometri-
cal constraints, which we will present in a separate article.

So far we have not mentioned systems at low Peclet num-
bers. For such systems, all terms in Eq. 2.4 must be taken
into account. This has been done in [14], but only for transla-
tional motion and the Oseen-tensor approximation for the
mobility matrix. The generalization to an accurate descrip-
tion of finite particles remains an interesting challenge.
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