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Abstract

We describe a numerical method for calculating hydrodynamic interactions between spherical particles effi-
ciently and accurately, both for particles immersed in an infinite liquid and for systems with periodic boundary
conditions. Our method is based on a multipole expansion in Cartesian tensors. We then show how to solve the
equations of motion for translational and rotational motion of suspended particles at large Peclet numbers. As an
example we study the sedimentation of an array of spheres with and without periodic boundary conditions. We
also study the effect of perturbations on the stability of the trajectories.
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Hydrodynamic interactions have three properties that make
Introduction their numerical treatment difficult:

* They are many-body interactions, i.e. they are not pairwise
The behavior of particles suspended in a liquid has inter- gdditive.
ested scientists ever since Stokes derived the drag formula They are long-ranged, decaying a® IWhereR is an
for a single suspended sphere [1]. It is also important for interparticle distance. This creates special problems for
many applications in rheology and colloid chemistry. Since  periodic systems.
all but the simplest problems require a numerical solutions They diverge for certain types of motion when particles
numerical techniques play an important role in this field. In approach each other.
this article we deal with the two most important problems
that any numerical simulation must address: the calculation The oldest and simplest approximation, apart from ne-
of hydrodynamic interactions and the integration of the equaglecting hydrodynamic interactions altogether, consists of
tions of motion. assuming pairwise additivity and describing the interactions

In the treatment of hydrodynamic interactions, we limit between each pair with the Oseen tensor (see Eq. 3.3). This

ourselves to spherical particles and low Reynolds numbergjescribes the leadingRLterms correctly, but is nevertheless
but aim to make the calculations both accurate and efficienyery inaccurate. Besides, this approximation has the funda-

* To whom correspondence should be addressed



228 J. Mol. Model.1996,2

mental problem that the diffusion matrix is not positive defi- Stokesian Dynamics regime

nite, which can only be circumvented by introducing more

arbitrary approximations [2]. Improvements such as theéWe consider a system Nfarbitrary particles suspended in a
Rotne-Prager tensor are available, but they all share the baiscous liquid which is at rest at infinity. The particles move
sic problem of assuming pairwise additivity and not treatingunder the influence of external forces and forces mediated
long-ranged contributions correctly; they also do not takeby the liquid; the latter consists of deterministic and random
rotational motion into account. The importance of the cor-contributions. Theequations of motion for the particles are
rect inclusion of all long-ranged terms was demonstrated igiven by

[3], where sedimentation of large rigid clusters of spheres

was studied. Even in such rigid structures, where short-rangecé

lubrication forces are irrelevant, all terms decaying &8 1/ E[MV] =FhR.V)+F R ) +Fext (2.1)
or slower must be included to prevent dramatic errors in the
sedimentation coefficient. In this equationR is a vector containing the positions

A better approximation has been developed by Durlofsky, g orientations of all particles. Similarly, contains the
et al. [4]. Their sheme provides correct short-distance yansjational and angular velocitiesid F describes forces
behavior and takes the multi-body nature of hydrodynamicq togues. The matriM is block diagonal and contains
interactions into account; however, it still does not containhe masses and moments of inertia of all particles.
all long-range terms correctly and does not provide suffi- e vectorF, contains the hydrodynamic forces, i.e. the

cient accuracy for many appligans. The firstsystematic  geterministic forces exerted by the fluid on the particle. We
scheme that can in principle be made arbitrarily accurate wagssyme that they are given by

proposed by Ladd [5, 6]. Both Durlofsky et al. [4] and Ladd
[7] have used their methods for dynamical simulations. a

Recently, Cichocki et al. [8] presented a number of im-"h~ -qv (2.2)
provements that yield accurate results at a much reduced cost.
We will show how these improvements can be combined witivhere the matrix{ is calledfriction matrix and depends on
previous analytical work on hydrodynamic interactions [9, 10]the viscosity of the liquid as well as on the positions and
and numerical techniques from the related field of electroOrientations of all suspended particles. The random fétces
static interactions [11] to construct an efficient and accuraténust be zero on average and fulfill the condition
numerical implementation that calculates hydrodynamic in-
tergctipns fqr systems of spherica'l particles. This implemen<|:r(o)|:r(t)>: KTZ3( ) (2.3)
tation is available from the CPC library [12]. It has already
been used in a study of the sedimentation coefficients of con-

glomerates of spheres [3], which has shown very good agreé‘lhiCh follows from the fluctuation-dissipation .theorem. .
ment with experimental results. Typically the time scale of observable particle motion is

We will also present an integration scheme that is suitSeveral ordgrs of magnitude larger than the relaxation time
able for accurate dynamic simulations in the Stokesian Dy©f the particlemomentat = mz__l- In other words, the ob-
namics regime, i.e. at high Peclet numbers. We include théerved particle velocities, which we will denote by are
rotational motion of the particles, which has been neglecte@verages of the velocities over times larger than. Under
so far. The rotational motion of suspended spheres is ofteffiS condition, one can derive an expression for the displace-
interesting in itself, but its calculation becomes essential wheff€nt of the particles in a time intervat which is much
systems with constraints, such as rigid assemblies and flexarger thart, but still small on the time scaséU, wherea is
ible chains, are considered. We will deal with the specific® tyPical particle size [14]. This expression is
problems of constrained systems in a second paper.

To test our integrator, we study the sedimentation of aAR= pF,,At+ ODAt+ X (2.4)
few small systems, both in unbounded and periodic
geometries. Unfortunately there is little experimental datayhere p = Z-1 is called themobility matrixand D = kT is

we could compare to; the sedimentation of some small clus:alled thediffusion matrix X is a random displacement with
ters has been studied by Jayawesdral. [13], but they do
not provide enough data to allow a meaningful comparison
to numerical calculations. Therefore, we must limit ourselves<x> =0, <XX> = DAt (2.5)
to demonstrating the convergence of our results with decreas-
ing time steps. Simulations based on these equationscafied Brownian
Dynamics simulations.
To judge the relative importance of deterministic and the

random motion, one introduces dimensionless quantities
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Finally, we must specify the boundary conditions at the

AR=aAR , D=DpD , u=ud surfaces of the suspended particles and at infinity. Experi-
= @A = Doy = UkTp has shown that real systems are best descritstitio
At= EAT , p= 20, Fo.= UTE ence has shown that real systems are best des y
D1°A kT ST b e (2.6) boundary conditionsi.e. the fluid sticks to the particle sur-
O=20 ., X=aX faces. The flow at iffity depends on the problem being stud-

ied; the two most important cases are vanishing flow and
uniform shear flow.

When the particles move relative to the fluid, they exert a
force density on it, which for non-permeable particles is lo-
calized on the particle sades. The force densifyr;j) in-
duced on particl¢ at positionRj moving with translational

wherea is the diameter of a typical particld,a typical par-
ticle velocity,and D, a typical one-particle diffusion coeffi-
cient. Eq. 2.4 then becomes

AR= PgiF, Af + ODAE+ X (2.7)  velocity U, and angular velocitgy can be written as
where the dimensionless quantity P&Ja/D,, is called the Y (a3 oo N Ny of
Peclet numberAt small Peclet numbers, Brownian motion o _Id rz J(r RyFR J)% '( ] (3-4)

dominaes. At large Pdet numbers, the random

displacements can be neglected. Simulations in this regim@hereZ. (r r') is a friction kernel that depends only on prop-

are calledStokesian Dynamicsimulations. erties of the particle and on the boundary condltwggr)
From Egs. 2.2, 2.3, and 2.4 it is evident that the effect ofs the velocity field in absence of parti¢lendu(r) is given

the liquid in which the particles are suspended is completelyy

described by the friction matri&kor its inverse, the mobility

matrix . An accurate and efficient calculation of these ma-

trices is therefore extremely important for computer simula-Y;j r): [Uj + ;% (r -R; )] 9( -R; ) (3.5)

tions of suspended patrticles.

where the step functio® (r-R;) is one inside the volume of
the particle and zero outside. From Eq.3.2 it follows that the

Creeping flow and induced forces velocity field v. . is given by
a,

Like most other approaches, our calculation of the friction
and mobility matrices is based on the assumption that the/, Id3rT ) (3.6)
liquid can be described by the so-caltedeping-flow equa-
tions, which are valid for flow at low Reynolds numbers
[15, 16]. We will also assume that the liquid is incompressVIt
ible. The equations of motion for the liquid are then
)= 1) 3.7)

nO%v-Op+f=0 , O¥=0 (3.1) i

wherev(r) is the fluid velocity apoint r, p(r) is the pres-

sure, and(r) is the force density acting on the fluid. In addi- Calculation of the friction matrix

tion, boundary conditions at infinity and on the particle sur-

faces must be specified. Solutions to the creeping-flow equa=ds. 3.4 and 3.6 form an integral equation from which in

tions for a given force density can be expressed convenientjfinciple f(r;i) can be determined for a given configuration
as of particles with given linear and angular velocities. Since

the force and torque on partidlare related té(r,i) by

r)+Id3rT( + () (32) |:=J' d3r f(r;i)

wherev,(r) is the solution fof(r)=0 and the Green function T, = J' d3 r(r=R;)xf(;i)
T(r) for an unbounded fluid are given e Oseen tensor

(4.1)

and linear and angular velocities enter via Eqg.3.5, the solu-
_ 1 Dl tion of the integral equation yields the friction matfix
_ﬁéﬂﬁ 7” [ (3.3) To find a numerical solution of the integral equation, it

must be transformed into an algebraic equation, which can

be done with a multipole expansion analogous to the famil-
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iar multipole expansion in electrostatic systems. As in elec-

——
trostatics, the multipole expansion is guaranteed to convergfe —lel A C(|+1)
only outside a spherical region containing all points where\™'1 Y1 XAy, y

the force density does not vanish. It is therefore difficult to

apply to non-spherical particles. For this reason, we will from W
now on restrict attention to particles of spherical shape. Thli(clz) (' +1)6)\p ARY1-..V
is not as strong a restriction as it may seem, since many com-

plicated shapes can be modelled by assemblies of small

spherical components.

(4.5)

1---Yl

wherea indicates the irreducible part of the tenapg ,  is

the completely antisymmetric Levi-Civita tensand Oy IS

the Kronecker symbol.
The multipole expansion for the induced force densities can |, this representation, the one-particle friction kernel

be formulated in several ways; for numerical applications,

the expansion in irreducible Cartesian tensors [17, 9, 10] i€(r.I’) is represented by a matdoy, ..y I'o'w'y...u5. (1)

most convenient. The force multipole tensor of rpnk for  whose elements have been calculated for several particle
particlej at positionR; is defined by models [18]. Similarly, the Oseen tensor is represented by a

Multipole expansion

matrix Gigy,...p, I'o'wy... 1) (ij), which expresses the flow

p+1 Id r(r - ) G R j;j) (4.2) field due to the force multipoles of partiglat the position

of particlei. Expressions for its elements have been derived
in [10]. The orignal integral equation fof(r;i) becomes a
linear system of equations whose unknowns are the force
multipole momentd, :

Heref(r;j) is the force density induced on partiglend
rP is the p-fold tensor product of theeetor r with itself.
Similarly, we define velocity multipole tensors that describe

the velocity feld u(r)-v(r) around the particle by (4.6)

c(p+1)(j):éﬂp[u(r)—vo(r)]rsz 43)  f4() sz Qlc( -1y ZGlolo(u)Eﬂlc(J)E
L

j I"a"

These multipole tensors can be decomposed into irreduc-

ible tensors, of which many do not give a contribution to the  The friction matrix can be obtained by solving these equa-

flow field. It has been shown in [10] that it is sufficient to tions  with Cio), = U, - and

consider the irreducible tensdys andc,, | = 1,2,.., which  ¢y4(j) =2w; =0 XVO( r)r=r, , making use of tﬁe fact that

for givenl ando have 2 + 1 independent components Thesethe forceg:J are given ble(J) and the torques; by &, (j).

tensors are given by A detailed description of the multipole expan3|on can be
found in [3] and [12]. It should be noted that the friction
matrix resulting from this calculation is positive definite at

(1) all levels of truncation of the multipole expansion.

(fIO)yl,,,y, = fyl...y| The core of our numerical scheme to calculate hydrody-
namic interactions is the numerical solution of Eq. 4.6, trun-

| W cated to a finite number of multipole moments. Details can
(fll)yl”'yl = sy, Ly 4.4 gsrig)eu;d in [12], where the implementation we use is de-

I(1+1) (1+2)

+ +2 ;
= Short-distance forces

(f'z)vl---vl 2(2+])6Nifhuv1---v|

Relative motion of particles at short distances creates large
frictional forces, whose description by a multipole expan-

and sion requires a prohibitively large number ofiier Wethere-
fore follow the suggestion of Durlofsky and Brady [4] and
’ (1 ' incorporate the short-range forces approximately in the form

N
=g YR - a @.7)

ij=1



J. Mol. Model.1996 2 231

where{ is the friction matrix as calculated according to the

above description with a multipole expansion of otdd? ) O 1L
is the exact two-particle friction matrix calculated from lu- ™51 = _4"? 3(r —nL)—v[
brication theory [20]and ;@ is the two-particle friction n E
matrix in orderL approximation. The basic idea of this form DZSZ =S

is that the large short-range forces are localized in the region

between two particles and can therefore be assumed to be ] .
pairwise additive. It is evident thgt, converges to the same whereL is the edge length of the elementary cell &hits
value forL - o asZ,, but it does so much faster. A multipole volume. A method for the efficient calculatlonslfandsg, .
approximation of order 3 is sufficient to calculate the fric- °ased on an analogous method for electrostatics [23], is given

(5.2)

tion matrix with an accuracy of about 1% [8]. in [24]. It should be noted that the Hasimoto tensor (5.1)
already includes the effect of the neutralizing homogeneous
Mobility calculations force density added to make the velocity field finite.

The multipole expansion in terms of irreducible Cartesian

In most applications of hydrodynamic interaction, such adensors that has been mentioned before must be re-derived

Stokesian Dynamics simulations, it is not the friction matrix With the new Green function. In its original form, it is valid

that is immediately required, but the particle velocities re-Only when the applied force density vanishes outside the par-

sulting from a given set of external forces, juéd=_,. These ticles. This assumption is violated by the addition of the neu-
! “ext’ - . . .

velocities can be obtained by first calculating the completdr@lizing homogeneous force density. Starting from the origi-

friction matrix and then solving the set of equatigfig) = @l Ta/lor expansion that leads to Eg. 4.2, one finds again

F.,.for U. Indeed this has been done by Durlofsky et al. [4]the formula given in [12] with the matri&(ij) replaced by

and by Ladd [5]. However, it has been shown in [8] that the

velocities can be obtailjed directly by solving a modificatipn Gp(ij) :GH(ij)+G'(ij)—G (”) (5.3)

of the multipole equation that leads to the friction matrix.

This procedure is numerically much more efficient. Here G,(ij) is the result of evaluating Eq.(A6) from [3]

or Eqg. (A.13) from [12] with the Oseen tendqfr) replaced

- . by the Hasimoto tensoF (r). The only non-zero elements
Periodic boundary conditions of G'(ij) are

The long range of the hydrodynamic interactions causes both
conceptual and practical problems when periodic systems

1 HA 2
are studied. The difficulties are exactly analogous to those Clrostar (”)_ﬁ
for the equally long-ranged Coulomb interactions, and can Givn -(ij):—i
be solved by very similar methods. Our treatment is based Tl 3n
on the theoretical framework developed by Felderhof [21]. Gau1qr (i1) =G oq; op (i) (5.4)
We limit ourselves to elementary cells of cubic shape. . N1
In analogy to the fact that the electrostatic potential of aC20up,:200 1, ('J) Y

periodic system is defined only if the system as a whole is
neutral, the velocity field in a periodic hydrodynamic sys-
tem is finite only if the total force on it vanishes. If necessary ~Note thatG'(jj) is non-zero even for=j. The matrix
this must be enforced by adding a neutralizing homogeneoug’ (ij) is zero foii = j and fori # j given by Eq. (A6) from [3]
force density to the system; this is physically equivalent towith T(r) replaced by
applying a constant pressure gradient. In addition, the shape
of the macroscopic assembly of elementary cells whose infi- 1.2 1 5
nite limit is to be considered must be specified; we will aS_T”(r):ar 1‘EDD(V ) (5.5)
sume it to be spherical.

Such a system can be treated much like a finite one wit —
a different Green function [21]. The Oseen tenb@) must I&nd evaluated at= 0.

Forl +1' > 4 the elements dB(ij) are lattice sums over
be replaced by the tensor

the corresponding elements &f{ij); in numerical calcula-

tions, they can be obtained by summing over all lattice sites

Tal)=-2[s()-00S 51 within a cutoff radius. The remaining elements contain long-
( ) 4"”[ ( ) ()] -1 ranged contributions and must be calculated by evaluating

the functionsS (r) and S(r) as described in [24] and using
Wh|Ch was fiI’St introduced by HaSimOtO [22] The funCtiOHS the procedure described above_

S, andS, have cubic symmetry and satisfy the equations
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In the Stokesian Dynamics regime, i.e. for high Peclet num
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whereB is a block-diagonal matrix containing unit matrices

for the mappiny; - R; and the matriceB(Q,) for the map-

ping w; - Q.
It is well known from molecular dynamics simulations

bers (see Eq. 2.7), only the external forces need to be consifliat quaternion parameters are a convenient choice for the
ered as driving forces for the particle displacements, a”%ngular variables, since the resulting matri8¢,) are sin-

Eqg. 2.4 becomes

AR= PR, At (6.1)

In principle this formula can be used to calculate particlesubject to the normalization conditi
trajectories. It is the Euler integration scheme [25] for the

differential equation

R= Ry (6.2)
However, the Euler scheme is not ideal for numerical
purposes. Other methods are more stable and more accur
at the same computational cost [25].
If rotational degrees of freedom are to be integrated

Eq. 6.2 must be generalized. The velocity vector replding

then contains all translational velocities,,...,V, and all
angular velocitiesw,,...,w,, of the particles. Correspond-
ingly, R contains the particle positions, specifiedy..,Ry,

and the orientations, specified Qy,...,Q,, whereQ is a
suitable set of angular variaslF_, is the vector of all ex-
ternal forcesF,,...,F\, and all external torquesg,,...,T.
Using the above definitions, the equations of motion for
Stokesian Dynamics read explicitly

tr

N N
Vi= ) uiF+ > u
i=1 =1

o, (6.3)
N N

0= W 3 U 64
j=1 =1

Ri —v (6.5)

Qi=B(Q)w (6.6)

whereuitjt, uitjr = uﬂf and ujf are 3 x 3 submatrices of the

mobility matrix 4. The linear relation (6.6) between the an-
gular velocities and the time derivatives of the angular coor
dinates depends on the choice of the latter. The equations
motion (6.3) — (6.6) may be written in the compact form

R= BpFay (6.7)

gularity-free[26]. A comprehensive treatise on quaternions
and their relations to spatial rotations can be found in [27].
Here it is sufficient to know that rotations can be paramete-
rized in terms of four real numbeng, q,, d,, g5, which are

e+ +p+ =1
For quaternion parameters the relation (6.6) reads explicitly
(the particle index has been dropped) [28]:

1o - - -0gxd
Eﬁom H h —% -O3 N
ho_13% % ~% E
aﬁzg 2 g% % & yH (6.8)
0 Oop -0 GO -

Here the angular velocity components refer tol#tm-
ratory-fixedcoordinate system. Eq. 6.8 is consistent with the
normalization of the quaternion components, since

Qollo+ QO+ BB+ GG 0

1+ &+ B+ §)

for any set of angular velocity components.

Integration of the equations of motion

Translational motionDue to the singular behavior of the
hydrodynamic interactions at short distances [20, 16] the dy-
namics of suspended particles can exhibit very different time
scales, since relative motion for particles which are in close
contact is almost completely suppressed. Differential equa-
tions describing such dynamical systems are catifddif-
ferential equationsin practice so-called implicit algorithms
have proven to be most useful to integrate stiff differential
equations [25,29]; we find this confirmed for our case, for
which we compared explicit and implicit central difference
schemes for both translational and rotational motion. In the
case of translation, the trajectories of particles in close con-
tact showed unstable oscillatory relative motions, ending with
Lépphysical overlaps, when an explicit scheme was used. This
could be avoided by using the following discretized form for
the translational equation of motion:

({~i})

Ri(n+1)—Ri (n—l) _v,
2At

R; (n)

(6.9)
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whereV, given by Eg. 6.3 and the positiong; by

(M) +2[R; (n+1)+R; (n- 1)])

The arguments, n+1, and+1 are shorthands for n - At
etc. Note that thdR. depend on the new positiofs(n+1).
This leads to the
positions:

R.

i=3(R; (6.10)

RV Hn+ 1)= R (n- 1+ 2184 ({R})) (6.11)

The superscript in~ R indicates that the iterated posi-
tions RY(n+1) are to be used in the evaluation of the pos
tions_Rj. We start the iteration procedure with

(n-1)

This corresponds to settiﬁ@ej = Rj(n), which is the con-

RY(n+1)=2R;(n)-R;

, (6.12)

ventional central difference scheme. The iteration was stopp
when the Euclidian norm of the distance between consec
tive estimates foRj(n+1) was below a prescribed tolerance
limit € - a, with a being the particle radius. It should be noted

that the implicit scheme described here is not essential

long as all the particle distances are sufficiently large; we

found that for distances larger than®0the standard ex-
plicit scheme can be used without any problems.

Rotational motionWe found that the rotational motion, for

which the singularities in the hydrodynamic interactions at
short distances are weaker, could be sufficiently well inte
grated with a normal central difference scheme. In analog?()f
to Eqg. 6.9, the discretized form of the rotational equation ol

motion reads

Q)= A=A g ()w (v, ()]
(6.13)
yielding the update formula
Qi(n+1)= Qi(n- 1+ 2a8(Q (1) ({Rj (fj})
(6.14)

for the quaternion parameters. The angular velodibese
determined byEq. 6.4. The body-fixed basigsatorse’; ro-
tating with the spheres can be updated usthfn+1) =
U(Q,[n+1]) - €,(0), whereU(Q) is the rotation matrix

233

u(Q)
b5 +of - -05  2(-dots +thd)  2(de%2 +uls) H
=0 2qot3 +thdp) a5+ -af —a5  2(~0ot +p0s) U
2(-qomp +az)  2(com +ap0s) G5 +05-of - qgﬁ

#ollowing iterative update for the particle

Close contact#é problem one has to face with iterative inte-

gration schemes for differential equations is slow conver-

gence. In our case this concerns the update of the particle

positions (see Eqg. 6.11). Slow convergence can occur in situ-

ations where the system asymptotically approaches a con-
i_figuration in wich particles stick to each other (see our ex-

ample bela)). We bund that sometimes 50 iterations and
more were necessary fer= 10712 whereas for larger, but
still small, particle separations only two or three iterations
were necessary. Due to inaccuracies inherent in any numeri-
cal integration scheme even the unphysical situation of over-
lapping spheres cannot not be excluded. To solve the prob-
eIgm of slow convergence and unphysical particle overlaps,
e removed critical close contacts by the following algo-
rithm:

1. Find all pairsi(j) of particles whose distance is less
or equal to 2:(1 +¢), wherea is the particle radius argds a
olerance limit.

2. Find all clusters of particles which have a connection
via close contacts. Consider e.g. three particles 1,2,4 where
(1,2) and (2,4) are in close contact. Then, according to the
above definition, {1,2,4} form a cluster since there is a path
from1lto4:1-2-4.
~ 3. Find the centroiR = 1/N ZoR for each cluster and
scale the relative positions by 1 & MereN is the number
particles in a cluster. The new positions are then given by
=R+ (1 +2)(R, -R).

4. Goto 1, to check if new contacts with particles not yet
involved in close contacts have been created by steps 1 to 3.
If this is the caseadd these contacts to the ones found in 1
and proceed with 2.

The procedure described above terminates after a finite
number of cykes. The exeme case which can occur is that
the whole system is treated as one cluster. We emphasize
that the above procedure should only be used if the numeri-
cal solution fails due to inevitable accuracy problems. It is
no substitute for an implicit integration scheme which can
handle much closer contacts than an explicit scheme.

Accuracy.We determined the accuracy of the explicit and
implicit integration schemes by simulating the sedimenta-
tion of three particles in a linear arrangement with different
time steps. Here and in the following section, we use a
dimensionless unit of time defined such that a single sphere
in an unbounded liquid would move a distance @82n a

time interval of length 1. Figure 1 show the differences in
vertical position for the central particle. All differences are
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Figure 1. The dependence of the error on
the integration step. (a) Explicit/implicit
integrator, At = 0.001. (b) Explicit/implicit

0.010 : : integrator, At = 0.01. (c) Explicit/implicit
=8 integrator,At = 0.05. (d) Explicit integrator,
O X At = 0.001. (e) Explicit integratorAt =
0.005 | ® . 0.005.
0.000
; -0.005
>
-0.010
-0.015
-0.020 L L
0.0 50.0 100.0 150.0
time
0.5 . .
oy 1
©
(d)
0.0 -
>‘§
>
05 ©\ T
-1.0 : .
0.0 50.0 100.0 150.0
time

with respect to a reference run with a time stefitaf 0.001  est time stepAt = 0.05. The step stcture of the error is
using the the implicit integrator at all times. The initial and caused by the close contact elimination procedure described
final configurations are shown in the figures. in the last section.

Figure 1, curves a — ¢ show the results for an integration The corresponding curves (d — e) for a purely explicit
that uses the implicit integrator whenever a distance becomestegration scheme (Figure 1b) show that the error in this
smaller than 0.00%k. Initially, while all particle distances case already becomes very large for small step sizes (nhote
are large, the errors are negligible. The correction mechahe different scale). This demonsés the necessity of the
nism described above becomes activauad t = 80, when  implicit integration scheme whenever short distances cannot
the two outer spheres approach each other significantly. Newe excluded.
ertheless the absolute error remains small even for the larg-
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Figure 2. Sedimentation of a planar square array of nine Figure 3.The end of the simulation whose beginning is shown

equal spheres in a viscous liquid under the influence of an Figure 1. The two configurations correspond to t = 135

constant gravitational force. The time separation betweerand t = 150, respectively.

two consecutive configurations &&= 5, corresponding

to 5000 time steps of lengifit = 0.001. Asingle particle

would move 2/3 - 1& during a time step, where a is the

sphere’s radius. step wasAt = 0.001 in our units. Figure 2 shows eight con-
figurations at time intervals of 5, beginning with the initial
configuration. Figure 3 shows two configurations from the
end of the simulation run, corresponding to tinbes 135

Examples andt = 150, respectively. In both pictures, we use three dif-
ferent colours to mark groups of spheres related by symme-

As an example we study the sedimentation of a square arragy with respect to a 90° rotation around the central sphere in

of nine equal spheres in a viscous liquid under the influencehe initial configuréion. Thesmall dots are added to show

of gravity — see video sequence no. la (‘Nine equally sizedhe rotation of the sphes. Thepositions of the configura-

spheres starting on a quadratic grid’). Here and in all follow+ions in the pictures correspond to the actual distance they

ing video sequencdhle center of mass motion is subtracted have moved.

The overall sedimentation of the cluster is shown on the In the beginning of the simulation the particles separate

lefthand side of the screen. The height of the frame indicateifito three planes, the corner particles being the slowest and

the total falling distance, and the height of the black bar corthe center one being thastest. Tis reflects the different

responds approximately to the height of the screen. exposure of the particles to the surrounding liquid. Then the

Figure 2 shows the beginning of the simulation. The staredge particles move outward and the corner particles inward,

configuration is shown at the top: the nine spheres are lowhereupon they “dive” through the plane formed by the

cated in a plane perpendicular to the direction of gravity; thdormer edge particles. Meanwhile the center particle seems

center-to-center distance between nearest neighbours is 3@, escape from the others. In the part between Figure 2 and

where a is the radius of a sphere. There are no interactioigure 3 (see video sequence no. la), the edge particles in

between the particles in addition to the hydrodynamic forcesturn dive through the plane of the corner péetic This in-

We ran a simulation of this system for 150,000 time stepserchange of the planes is not periodic, however; finally the
using the methods described above. The length of each tim@rner and center particles form a quasi-rigid cluster of five
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Figure 4. The time evolution of the rotation
angles.
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Figure 5. The beginning of a simulation with a slightly
perturbed initial configuration. The time separation between
two consecutive configurations is the same as in Figure

i.e. At

frame

= 5. The simulation time step is ten times as large
as in the simulation shown in Figures 1 and 2,4te= 0.01.

150

particles falling somewhat faster than the second cluster con-
sisting of the four former edge particles in close contact.

The angle of rotation of the corner and edge particles in
the course of the simulation is shown in Figure 4. Note that
the axis of rotation is constant for each particle, so that a
single angle is sufficient to characterize the rotational mo-
tion.

To test the stability of the system with respect to small
perturbations of the initial configuration, we ran a second
simulation in which all the initial particle coordinates were
randomly shifted by + 0.&. This simulation was run with a
time step ofAt = 0.01. Theresults are shown in video se-
guence no. Ib (‘9 equally sized spheres starting on a slightly
perturbed quadratic grid’) and in Figures 5 (first part) and 6
(second part). For comparison, the total falling height indi-
cated by the frame is the same as in the simulation shown in
video sequence no. la. Until approximately 80 the con-
figurations resemble those of the unperturbed simulation, but
then the order is quickly destroyed.

The strong influence of the long-range terms in the hy-
drodynamic interactions can be seen by comparing a simula-
tion of a system with and without periodic boundary condi-
tions — see video sequence no. Ic (‘Nine equally sized spheres
starting on a quadratic grid with periodic boundary condi-
tions’). For comparison, the total falling height indicated by
the frame is again the same as in the simulation shown in
video sequence no. la.

The nine particles now form the cubic elementary cell of
a periodic system whose lattice constans 16 (L = 16 in

q0ur units). This simulation was also run with a time step of

At = 0.01. The beginning of the simulation is shown in Fig-
ure 7. It should be noted that the time separation between
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Figure 6. The continuation of Figure 4. Figure 7. The beginning of a simulation with periodic

boundary conditions. Only one elementary cell is shown. The
edge of the elementary cell has a length L of 16a (L = 16 in
two consecutive configurations in this picture is twice as largéur units), where a is the radius of the spheres. Note that the
as in Figure 2; the net sedimentation of the particles is muchme separation of two subsequent configurations is twice as
slower than in the non-periodic case. Nevertheless, the rel&ouch as in Figure 2, i.edt, = 10. The simuldon time
tive motion of the spheres with respect to one another is néttep isAt = 0.01.
much influenced by the presence of the periodic images.
Figure 8 shows the heat produced as the particles move

downward against the friction caused by the liquid for all|ations quantitatively. It can clearly be seen where the per-

three simulations. The heat production is given by turbed simulation starts to deviate significantly from the un-
perturbed one, and the smaller sedimentation speed of the
periodic system is also evident.
z aled (7.1) This example shows that even very simple systems with
|

hydrodynamic interactions can show a surprisingly compli-
cated behavior. We are not aware of any theory that could
the rotational velocities do not enter as there are no appliegredict more than the very first steps of our simulations.
torques. For the periodic system, only one of the images is
used. We normalize the heat production by that of nine spheres
sedimenting at infinite distance. Since in our simulation theConclusion
forces on all particles are identical and constant, the heat
production is proportional to the velocity of the center of We have shown how the hydrodynamic forces between spheri-
mass of the nine spheres. Figure 8 shows that initially theal particles immersed in a liquid can be treated numerically,
heat production increases but is modulated by an oscillatioand how Stokesian Dynamics simulations can be performed
corresponding to the position interchanges of the planes an such systems. To demonstrate our method, we have per-
the corner and edge particles. But once the final clusters afermed a simulation of a simple model system.
formed, the heat production decreases monotonously. This In its current state, our method can be used to study the
figure also illustrates the differences between the three simwdynamics of colloidal suspensions, provided that the Peclet
number is high enough to justify Stokesian Dynamics. It can
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also be used for Monte-Carlo type calculations of equilib-9.
rium properties irrespective of the Peclet number. One of the

most interesting applications from our point of view is the10.
simulation of macromolecules modelled as assemblies of1.

spheres; however, this necessitates the treatment of geometri-

cal constraints, which we will present in a separate article. 12.
So far we have not mentioned systems at low Peclet nunt3.

bers. For such systems, all terms in Eq. 2.4 must be taken

into account. This has been done in [14], but only for translai4.

tional motion and the Oseen-tensor approximation for the

mobility matix. The gneralization to an accurate descrip- 15.

tion of finite particles remains an interesting challenge.

16.
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